Label-free quantitative analysis of the casein kinase 2-responsive phosphoproteome of the marine minimal model species Ostreococcus tauri

نویسندگان

  • Thierry Le Bihan
  • Matthew Hindle
  • Sarah F. Martin
  • Martin E. Barrios-Llerena
  • Johanna Krahmer
  • Katalin Kis
  • Andrew J. Millar
  • Gerben van Ooijen
چکیده

Casein kinase 2 (CK2) is a protein kinase that phosphorylates a plethora of cellular target proteins involved in processes including DNA repair, cell cycle control, and circadian timekeeping. CK2 is functionally conserved across eukaryotes, although the substrate proteins identified in a range of complex tissues are often different. The marine alga Ostreococcus tauri is a unicellular eukaryotic model organism ideally suited to efficiently study generic roles of CK2 in the cellular circadian clock. Overexpression of CK2 leads to a slow circadian rhythm, verifying functional conservation of CK2 in timekeeping. The proteome was analysed in wild-type and CK2-overexpressing algae at dawn and dusk, revealing that differential abundance of the global proteome across the day is largely unaffected by overexpression. However, CK2 activity contributed more strongly to timekeeping at dusk than at dawn. The phosphoproteome of a CK2 overexpression line and cells treated with CK2 inhibitor was therefore analysed and compared to control cells at dusk. We report an extensive catalogue of 447 unique CK2-responsive differential phosphopeptide motifs to inform future studies into CK2 activity in the circadian clock of more complex tissues. All MS data have been deposited in the ProteomeXchange with identifier PXD000975 (http://proteomecentral.proteomexchange.org/dataset/PXD000975).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Functional analysis of the rodent CK1 mutation in the circadian clock of a marine unicellular alga

Background: Casein Kinase 1 (CK1) is one of few proteins known to affect cellular timekeeping across metazoans, and the naturally occurring CK1 mutation shortens circadian period in mammals. Functional conservation of a timekeeping function for CK1 in the green lineage was recently identified in the green marine unicell Ostreococcus tauri, in spite of the absence of CK1's transcriptional target...

متن کامل

Shotgun proteomic analysis of the unicellular alga Ostreococcus tauri.

Ostreococcus tauri is a unicellular green alga and amongst the smallest and simplest free-living eukaryotes. The O. tauri genome sequence was determined in 2006. Molecular, physiological and taxonomic data that has been generated since then highlight its potential as a simple model species for algae and plants. However, its proteome remains largely unexplored. This paper describes the global pr...

متن کامل

Ostreococcus tauri is cobalamin-independent

The marine microalga Ostreococcus is considered to depend on the methionine synthase METH and its methylated cobalamin cofactor for methionine synthesis. Here I describe minimal media lacking both cobalt and cobalamin yet suitable for clonal growth of Ostreococcus tauri. Because Ostreococcus lacks the methylcobalamin-independent methionine synthase METE, Ostreococcus growth without cobalamin is...

متن کامل

Interplay of Phosphorylated Apoptosis Repressor with CARD, Casein Kinase-2 and Reactive Oxygen Species in Regulating Endothelin-1–Induced Cardiomyocyte Hypertrophy

Objective(s):  The role of the Apoptosis repressor with caspase recruitment domain (ARC) in apoptosis and in certain hypertrophic responses has been previously investigated, but its regulation of Endothelin-1 induced cardiac hypertrophy remains unknown. The present study discusses the inhibitory role of ARC against endothelin–induced hypertrophy. Results:In present study Endothelin treated car...

متن کامل

Ostreococcus tauri: seeing through the genes to the genome.

The marine green alga Ostreococcus tauri is the smallest-known free-living eukaryote. The recent sequencing of its genome extends this distinction, because it also has one of the smallest and most compact nuclear genomes. For other highly compacted genomes (e.g. those of microsporidian parasites and relic endosymbiont nucleomorphs), compaction is associated with severe gene loss. By contrast, O...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 15  شماره 

صفحات  -

تاریخ انتشار 2015